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Abstract

The steady-state distribution function is obtained for electrons

initially emitted from a point source into a neutral gas and which subse.-

quently drift under the influence of a uniform dc electric field while

undergoing elastic collisions with the gas atoms. The usual approxi-

mations are retained of regarding the distribution function as almost

spherical in velocity space and of regarding the fractional energy gain

or loss by an electron upon collision as small. However, the terms in

the Boltzmann transport equation involving spatial derivatives of the

distribution, which are usually assumed small in comparison to the

field and collision terms, are treated exactly. The distribution function

is given as a sum of energy modes, each of which decay with distance

from the source. The lowest of these modes is the far-distant distribution,

while the higher ones, which decrease more rapidly with distance, describe

the decay of the initial source energy distribution. The complete distri-

bution is obtained in terms of known functions in the case of an energy

independent collision frequency,, whereas in the energy independent

cross section case, only the lowest mode is obtained, The far-distant

part of the distribution function is compared with the usual approximate

expression which is obtained when the gradient terms 'are considered small

and which is expressed as the density times a normalized energy function.

It is shown, that when the gradient terms are correctly considered, the

far-distant distribution in energy becomes position dependent. Furthermore,
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Abstract (Cont.)

the deviation from the approximate theory becomes larger, the further

the electrons are off the geometrical axis. This position dependence

is most important when the electron energy is large in comparison to

thermal energies. The interpretation of Townsend method for the

determination. of the ratio of the diffusion coefficient to the mobility,

ID/ý, is re-examined on the basis of this more exact theory. It is

shown that the error in D A that results from using the conventional

interpretation of this method under typical experimental conditions is

never more than about 20%.
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I. INTRODUCTION

It is usually assumed that electrons which drift and diffuse

through a gas under the influence of both uniform electric fields and

electron density gradients have a distribution in energy that is

independent of position. This means that the distribution is assumed

to be unaffected by the presence of gradients in the electron density and

is taken to depend only on the field strength and, of course, on the

pressure and variety of the gas. A direct consequence of this is that

the electrons can be characterized by a diffusion coefficient, D, and

a mobility, ji, which are independent of position. It is this aspect

that has been the basis for the interpretation of many experiments

concerned with the transport properties of electrons in gases, such as

the Townsend type experiment for the measurement of D/•I1 2 and the

1,3
time of flight measurements of p.. In turn, the analysis of the

measured transport coefficients from these experiments in terms of

electron-atom collision cross sections have also been dependent on this

assumption. i,4

The theoretical justification of this assumption must come

from the solution of the Boltzmann transport equation that is appropriate

to electrons under the influence of both electric fields and electron

density gradients. Allis and Allen5 have derived the basic equations for

electrons under these conditions. These authors did indicate certain

formal aspects of the general solution as well as pointing out,
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qualitatively, the approximate nature of the conventional assumption;

however, they did not discuss any specific case fully.

It is the purpose of the present study to (1) investigate the

conditions under which the effect of electron density gradients on the

distribution in energy can be neglected and (2) to obtain solutions of the

Boltznaan equation which will demonstrate the specific effects intro-

duced by the gradients. The geometry used in this study, which is

one of the simplest that can serve to illustrate these effects, is the

point source of electrons in an infinite uniform field region. Also

for reasons of simplicity, the collisions between the electrons and

gas atoms are taken to be elastic. In Section II the Boltzmann equation

for the case of an energy independent collision frequency is given and

the approximations involved in assuming the distribution in energy

to be position independent are examined. Also a criterion is developed

for the conditions under which the effect of electron gradients can be

neglected. In Section III the Boltzmann equation, as given in Section II,

is solved. The resulting solution yields not only the limiting distri-

bution at far distances from the source but also the higher modes which

describe the decay of the initial distribution into this far-distant part.

The far-distant distribution is then compared with the usual position

independent distribution. In Section IV the Boltzmann equation for the

case of an energy independent cross section is given and an approxi-

mate expression is obtained for the distribution at far distance from the



source. This expression is compared with that obtained for constant

collision frequency. In Section V the Townsend D/L experiment is

examined on the basis of this more exact theory and the ei:rors that

result from using the conventional interpretation of this experiment

are discussed.

II. GENERAL CONSIDERATIONS

The average properties of electrons moving through a gas,

e. g., electron density, current density, mean energy, etc., can be

predicted once the electron distribution function, f(r, v), is known.

The significance of this function is that f(r, v) dr dv denotes the

number of electrons at position r in dr and with velocity v in the range

dv. The distribution function in turn satisfies an equation of continuity

in position and velocity space, i. e., the Boltzmann transport equation.

This equation describes the balance that must exist in steady state

between the rate at which electrons enter and leave a given element

of volume, dr dv in velocity and position space. The flow in position

space results from the velocity of the electrons while in velocity

space it results from their acceleration due both to collisions with

the gas atoms and to the applied field.

There are several approximations commonly made in order

to simplify the integral-differentia.l Boltzmann equation when applied

to electrons. The first is that the distribution function is almost
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,i

spherically symmetric in velocity space and therefore can be adequately

represented by the first two terms of an expansion in spherical har-

monics involving the direction of the velocity. That is, f(r, v) can be
i ,4 6

written as

f(r, v) f (r, v) + f (r,v)- (v)

W M, I AV

The second is that the fractional energy gain or loss by an electron

upon colliding with a gas atom is small. This is justified in the case

of elastic collisions, to which the present paper is restricted, because

of the small electron to atom mass ratio. With these approximations

the Boltzmann equation reduces to two partial differential equations.

The present discussion will, in addition, be restricted to uniform dc

electric fields and to a constant collision frequency gas. While this

latter restriction will be relaxed further on to include the case of con-

stant cross section, for the present the case of constant collision fre-

quency can serve best to illustrate the important features of the problem.

When the above approximations and restrictions are taken

into account the equations that result for f and f are

2mv 3/' (fO +/kT20 ) •m 1 .2Cl/2 f

1-/2_ /eE 2 \12" ••"•)-(•, i

and

a 2 f°+eEk•-)=O0 (2)
VfI + ýý
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A
Here the electric field Lis given by E= -kE, where k is the unit

vector in the z direction, v is the momentum transfer collision frequency,

Sdenotes the kinetic energy of the electrons, m and M are the mass

of the electron and the atom respectively, T is the gas temperature,

and S(r, C) is the electron source term.

Qualitatively these equations can be explained as follows:

"We have assumed that f(r, v) can be represented by the term, fo, that

is spherically symmetric in velocity plus the small non-spherical

term, ." v. Therefore the Boltzmann equation, which balances

the rates at which electrons enter and leave dr dv, also breaks into

two parts, the first, Eq. (1), which balances the spherical rates and

the second, Eq. (2), which balances the non-spherical rates. The

first term in (2), which represents the effect of collisions in reducing

the asymmetry in f( v), is balanced by the second and third terms

which represent, respectively, the effect of diffusion and drift in

increasing the asymmetry. The first two terms in (1) reflect, respec-

tively, the fact that electrons can lose and gain energy as a result of

collisions with the gas atoms. The third term represents the net

flow of electrons into d4 with energy E that occurs when the asym-

metrical part of f varies with position. The fourth term reflects the

fact that the electrons can gain energy from the field and that this

occurs only through the asymmetrical part of f.
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The equation that fo must satisfy is obtained by substituting

f from (2) into (1) and is

2mv /2 0  ( M eE fo

MeE . 2 + T2eE +f 2 f- 0' +--7•Z I• • •Z'+ 3---
mv3mv oE c! 3mv

=-S(r, . (3)

00 When f is independent of position, i. e., when the electron density is

uniform, the solution of (3) with S = 0 is given by

Const x exp -6/[kT + M eEJ)] (4)

Under these conditions the balance, as represented by the first three

terms of (3), is between the electrons losing energy from collisions and

gaining energy from collision and from the field. When f depends on

position, the additional terms in (3) that involve the spatial gradient of

f appear. If these terms are assumed to be small in comparison to the

collision terms and to the field term, then an approximate solution to (3)

can be expressed as f 0 z n (4) F(j ), where n (r is the electron density,

whose functional form is as yet undetermined, and F(6 ), which repre-

sents the distribution in energy, is given by (4). The equation that n(

must satisfy is obtained by multiplying (3) by Fi/2 dG and integrating
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over the complete energy range. The resulting equation, which is the

familiar continuity of current equation, can be written, with S = 0, as

A
•" (Dn-n-- gkn) 0, (5)

where D and • are given by

D 8ifF(e ) dE2 m) )
3m

and

3m2 V dF

A simple criterion can be obtained for conditions under which

the gradient terms can be neglected in comparison to the field term or the

collision terms. If the approximate form for fo is assumed, i. e.,

f n(Qr exp [-E 'kT+l/)] (•)

where B = (3/M) (mv/eE).2 aA:d this is substituted into (3) along with the

2equation for n given by (5), then the relative magnitude of the various

terms can be compared. For this case of constant collision frequency the

last two terms on the left hand side of (3) cancel. The ratio. of the

remaining gradient term to either the energy loss collision term or to

the sum, of the collision and field term representing energy gain can be

expressed as
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In this equation E av denotes the average electron energy, (3/2)(kT+I/B),

ET is the thermal energy of the gas, (3/2) kT, and D/p. = (kT+i/B)/e

We see that if iv >T (high field limit), the gradient terms can be

neglected when the diffusion current in the field direction, D(•n4)

is small in comparison to the drift current, [iEn. However as
av

approaches IE (low field limit) the gradient terms become less and less
T

important for a given ratio of diffusion to drift current.

The case of a point source in an infinite uniform field region

can serve to illustrate these points for a specific geometry. The density

7
for a point source is given by

2 12 2 2n(r) (z + p2) exp E z - (z + , (8)

where z is the distance from the point source along the field direction

and p is the cylindrical radius. When the density gradient to density

ratio is obtained from this expression and is substituted into (7), the

ratio of terms in the high field limit (1/B -kT) becomes

2- coso - Mev cos )
where 9 is the polar angle from the source. When the factor 4 C=,,/3eEz

is small and the point of interest is near the axis (cos 9 1 1), the gradient
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term can be neglected. However, for positions sufficiently off the

axis (cos 9 <1) and again with 4 E v/3eEz <i, the gradient term
av

cannot be neglected under any circumstance.

The extension of this type of argument to a constant cross

section gas is straightforward and probably the above conclusions are

a reasonable guide for gases with a more complicated energy dependent

collision frequency.

III. CONSTANT COLLISION FREQUENCY

A. General Solution

The equation for fo, which is given by (3), can be rearranged

to read

E-/(f @/ eEB z +eEB 51Ez

+ 12 2fo MS(e)

(eE) 2B 2mv

where B, as defined previously, is (3/M)Q•n/eE) 2 . It is clear that

because of the mixed derivatives in e and z the equation is not separable

in these variables. However, by changing to new independent variables,

that are, for convenience, made dimensionless, the equation can be put

into a separable form. The new variables are defined as follows, 8
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S BIE
X-+•

=x - eEBz

R =eEBp

and with OC= kTB. Then the differential equation becomes

-3/2 • 3/2 (fo R" 2m x
ax X ý2 R ;R & ~R 2 mvx .

(9)

where 7 has been expressed in cylindrical coordinates since fo is to

be calculated under conditions of cylindrical symmetry. It should be

pointed out that in the high field limit, i. e., when O(.,1, the new

variable 1 is simply proportional to the total electron energy, E -eEz.

Since the equation separates in the variables x and n and not in E and

z, it would be a formidable task to satisfy boundary condition on a z-plane.

However, what can be obtained in a straightforward fashion are solutions

for the case of volume sources in an unbounded region. Another case

that can be simply treated, but will not be detailed in the present paper,

is for volume sources in the presence of cylindrical boundaries parallel

to the z axis and on which f0 vanishes, e. g., a point source on the axis

of a right cylinder with f0 vanishing along the inside surface. However,

the simplest geometry that can be used to illustrate the features of the

distribution when the gradient terms are correctly considered is the
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point source emitting monoenergetic electrons in an unbounded region.

Therefore, Eq. (9) is to be solved with S given, in terms of i, z and

p, as

, ' p)= &(z) 6 -)j (10)
'rP(40't1/m) (2 ./'m)' 2

This term represents one electron per second being emitted with energy CO

from the point z = p = o.

The homogeneous form of Eq. (9) can be separated into the

three ordinary differential equations,

x-3/2 d 3/2a (xdF(X) ++ F(x) 0 (11)
X dxx\Ix+d +Fx)0 ,(1

1 dP(R)\ 2

1 R dR + K2P(R)= , (12)R dR

a2n dZ(r) (K,2(( +2 )+ Z T 0((13)
and O d + d KK G±~ =0 (13)

The solutions for (12) and (13) that are of interest can be written down

immediately as

P(R) = (KR),

and Z(•) = expL(-±I+4•(K 2 CA

9where j0 (KR) is the zero order 8essel function. In order to put (11)

in a recognizable form let
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2

4

and F=h(x) exp [- 2-l-) x]

Then (11) becomes

d2h
dh + (3/2-• ) dh -3/4 (If " 1) h- 0

dx2

The solution of interest is regular at the origin and is

9

where F(a I c I z) is the confluent hypergeometric function. Now Eq. (11)

is an eigenvalue equation for P3 (or -y). it is easily shown that the

corresponding eigenfunctions are orthogonal with respect to the density

3/2 x
function r(x) = x e , i.e.,

(co

of x e F PY F dx =o if y

The eigenvalues and eigenfunctions are found by selecting

the set of V 's which made the solution of (11) quadratically integrable

and orthogonal with respect to the density function. By inspection of

the asymptotic behavior of the confluent hypergeometric function9 the

allowed spectrum for y and the corresponding eigenfunctions can be

found. A part of the set is discrete with
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"F (1-+' + (1/(l/2'

F (= exp0 2 c itiv Ln (1) NX)
N 2

(1/2) 9
where riis a Laguerre polynomial,

1
"t- 1+ (4/3XQ

= 0, 1, 2 . . . .o (positive integers)

and with the normalization constant N given by

N2 
_ 1 43.e5/2

Ný -/ f ( + (4 /3)-Ca/ (2, + 3/2 (3 I/2 -•

The rest of the set is continuous with

FC (x)W FC.4 i i .3 /43/2 i ,

where C~is a normalization constant. y =20and CO is a continuous

variable in the range of 0 --p- + co. It will be assumed that this is a

complete set.

The solutions to Eqs. (11), (12), and (13), as given above, will

now be used to build up the solution to Eq. (9). It is convenient first

to. find the Green's function for (9), i. e., to find the function

G(x)gR xRg)R) that satisfies the equation

x-M/2 9 x3a/2 (G +j+ __Qx ÷ +- k + 2--+ U +tý)• !, (R-
-(x - x) Og -2 R R)

K -(x - X) (-)(R - R) .(14)
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and then to use the expression
9

fo-.MSx, dx ddR (15)
fO0(x, 1, R):=f (x,,R (x, t,R-) 2mvx" dx-d •(5

to obtain the fo that satisfies (9) for a specific source term. Now the

function G can be expanded in terms of the energy functions, F , as

G .2A ý,R, R, x) F (x,

where the indicated summation is to be taken as a sum over the discrete

spectrum of y plus an integral over the continuous part. When this

expansion is substituted into (14) and the result is multiplied by r(x)F 1(x)

and integrated over x, the equation for A is found to be' 1Y

-PA ÷÷ (140) + a- r(x)F (x) S(R-R) &(-•)

(16)

Now A can be expressed as

A= ju KM x) J (K R) KdK

0

When this is substituted into (16) and the result multiplied by RJo(1(R)
0

and integrated over the complete range of R, the equation for U that

results is

The solutionKt+ ti+s R r (x)Fu s

The solution to this equation is



•exp exjpý + 20((ý+(
'7)(

U =r(x) F ( x p O()e.
1+ 4 (P3 + (I+X)K21/

Therefore, G(x,j, R Ix, _, R) is given by

COG= exp -~)2]~ r(X-) F~ (X-)F (x) dK K J0(KR) J,(MR)

F1 +4~r (+32])1/ r 2 2) l/2L exp -[/4( + ([3 + (1 +t)K).b.

By using the integral expression (15); with the source term given by (10),

and integrating over the complete range for x, and R the following

I01
expression is obtained for f

C N 2 eEB I//2
0xp 0 21-'-l-* Pe°F (xo) F (x)

41TD 
fr (3/2)

dK Kj (R) +4 + 2]- 1/2 exp [(+4 0( 2) 1/2

j~ 0 4KKI(1)[4  V) +K JK x y (1+) 0 K)
V2

In this expression C , which is the normalization constant for the

maxwell type distribution, exp [-(BE/(1 +00] , is C,= ImB/21T(l +))3/2
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and D is the diffusion coefficient that corresponds to this distribution,V

i.e., D =(I +O( )/vmB. The convenience in expressing the constant

in this way wiUl be apparent when the far-distant part or lowest mode

of this complete distribution is discussed below.

The integration over K can be carried out immediately by

using the following equation given by Watson1 1

-1/2129 dKK 0 K)( 29) exp[ (K2 +2)/ 9

= ( 2 + R2 ) exp [ (%2 + R2)I/

The resulting expression for f0 is

2 1/2-1/2fo N eEB I _2rX xo)2 + R

4ITD 2 (32

(%~ ~ x.)2 +R2) ] 1/ (17)

B. Lowest Mode

The lowest mode of the distribution corresponds to the

eigenvalue 3 = 0((y = 1) and to the energy function

E (x) = e-xL (12) (x)/N = e-x 1'7(3/2)/N
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This part of the distribution is

0 o eEB 1+ 1/2 _r2 1/
~o0= 41D ejo xL 1  (~xo) 2  RJ

S- - o) +R

When this is expressed in terms of the variables F , z and p it becomes

o eE ~1/2+r 1 -21/2
f I 

0 eEz + (eEp)j
V 4IDIV +,• / -+Z

-1 F B I_exp exp t( (eEz I I

r PE 2 ( 2 1/2
exp L18 1 ' -eE1 .

- 2- eEZ 2{1~)(8

It will be shown below that the higher modes decay exponentially with

distance from the source. Therefore, the lowest mode is the only part

of the complete distribution that is of interest at far distance from the

source. To contrast the behavior of this far-distant part with the usual

distribution as discussed in the previous section, it is best to go to

the limiting cases of low and high field.
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Low Field Limit

For low fields O( >1 and f o from (18) becomes
0

f o - e z + 1

0 ____ ___ 1(1/2) )
eET•_•_ (z E - 6o J--" {_ eE )t -o2 .2. I/,.

exp 2 e exp k /eE
ek __eB~ eET 0,

If the position is far from the source, then

eEBz ?>( )/kTo0

and f becomes
0

0O~ C - El/'kT 2 2-1/2 \/eEz)
f 4,tD e (z+p) expý2kT-

exp 2 kTeE ( 2)12]

In this limit the distribution function agrees with the usual distribution

where the density is given by (8) with D/• = kT/e. Of course with

E =- 0, the diffusion limit results, i. e.,

f O CM= (Cv/4•mv)(z 2 + p2) exp (- e/kT)

Therefore, as was shown by the qualitative discussion above, when

the electrons are in equilibrium with the gas the effect of gradient

terms can be neglected. o
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High Field Limit

In this case O,<1 and f 0 from (18) becomes
0

o C, 4eE eBE FE- o eE z)2 2 (/2

Lip B/2()E- (5 - eEzj exp {(B/2(Y.)

[( - eEz)2 + 0((eE.e)2] (19)

Now

0 -eeEz) +OL¢e•)2 = •-eo0- eEz

o2

0
and therefore f 0can be written as

Se 4D eB (E- Eo eEz

exp (B/2Cý) (E -E -e° z +oE ~

exp B(eEe) 2/4 - - eEz (20)

i1] 0

where only terms that are ind~ependent of O( or vary as OCare retained.

It should be apparent from (20) that the fraction of electrons with
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o + 6Ez becomes smaller as 0( decreases while the fraction with

0< 7 + eEz is independent of 94. Therefore the limiting form forf0

when V_ is small can be expressed as

0) Cge -BE 6-6 0 2-

- 1 exp EeEBE/4z( z (21)

when E <• + eEz, and
0

f 0fo
0=

when •> + eEz.

This distribution must now be contrasted with usual distribution

which, in the same limit, is

fo CY -BE (z+•)_--1/2 (eEB V)+ 2)/ z•
fo) approx. - 4VDV e (z 2 + P 2 exp§" 2 Le 2 z2  zI

(22)

where the density factor is given by (8) with D/4 = 1/eB.

It is clear that since (21) cannot be written as a function of

energy times a function of position, the distribution in energy will

depend on position. To illustrate this new behavior the ratio of (21)

to (22) is plotted in Fig. 1 as function of i/eEz for various values of

e/z. In this plot the parameter 3/2 eEzB, which is shown below to be

equal to Eav/eEz for on-axis points far from the source, is taken to be

0. 1. Also, for simplicity, the initial energy Eo is taken equal to zero.
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This plot indicates that electrons close to the axis have a higher

average energy than would be expected while those sufficiently off

axis have a lower average energy. Also there are fewer electrons off

axis than would have been predicted by the usual distribution.

If the position is far from the source, then the quantity

E/eEz can be considered small in comparispn to unity and taking up

to first order in this quantity, the distribution from (21), with ° = 0,

becomes

V 2
f 4+ exp BE (I+ (e/2.z)2

exp [-eEB P 2/4z]

We immediately see that when E/eEz and (P/z)2 can be neglected in

comparison to unity, i. e., for positions far from the source but very

close to the axis, the distribution agrees with (22). This agreement is

consistent with the earlier qualitative considerations. The above expres-

sion can now be used to obtain approximate expressions for the average
12

energy and density. These are

E 3(l+-I/eEBz) (23)
2B (1 + (e/2z)2)
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and

(1 + 3/2 eEBz) L eEBz 2 (24)

41VDi Z + (P/2z) 2 3/

These express, in a quantitative way, the behavior displayed in Fig. 1.

Again we see that the average energy for electrons on axis is larger

then would be predicted by the usual distribution, and by a factor of

(l + i/eEBz). This points out the fact, which was not clear from Fig. 1,

that for positions far distant from the source the average energy of on-

axis electrons goes to the expected value of 3/2 B. Also we see that

electrons sufficiently off the axis have a lower energy than expected.

For example, at an angle of 450 (C/z = 1) the average energy is down

by 25%, when the term i/eEBz is neglected. The usual expression for

the density around a point source, as contained in (22), can be expanded

in powers of (e/z)2 to be compared most easily with the above "exact"

expression for the density. Such an expansion results in

1 1 - 1/2 (/z)2 + (1/16) eEBz (P/z) ex EBe
-4'Dxz ep z L]

and the ratio of the densities can then be expressed as

n exact" z (1+ 1/8 (p/z) 2 - (1/16) eEBz (_/z) 4 + 3/2 eEBz

n)approx.
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This relationship shows that the density for on-axis electrons can be

higher than predicted by the usual theory, while for electrons suffi-

ciently off axis the density can be lower than expected. This is in

agreement with the behavior shown in Fig. 1.

The above results would indicate that the average electron

energy would continue to decrease without limit as the position got

further and further off the geometrical axis. The apparent lack of a

lower limit to the average energy arises because the results were obtained

in the limit of very small 4. By returning to the expression for the

lowest mode as given in (19), it can be shown that for large enoughp,

such that (>z +( - E )/eE , the limiting mean energy is 3kT.
0

A qualitative explanation as to why the "exact" theory

predicts an average energy that can. differ from the usual position inde-

pendent value of 3/2B can be given as follows. The current density at

a given point, which is made up of the diffusion current plus the drift

current, is a direct measure of how asymmetric the distribution is, i. e.,

a measure of how many more electrons are moving in the direction of

the current than against it. Now the electrons, as a whole, gain energy

from the field only because there are more electrons moving against

the field than with it, In the usual theory in setting up the balance

between the electrons gaining energy from the field and losing energy

from collisions with the gas atoms it is assumed that the contribution

to the electrons gaining energy from. that part of the asymmetry corresponding



:26

to the diffusion current can be neglected. Therefore in the "exact"

theory where the effect of the diffusion part of f is taken into account,WA

it is clear that when the diffusion current adds to the drift current the

mean energy will be higher and when it subtracts from the drift current

the mean energy will be lower. These conclusions are consistent

with the results for the point source geometry, for in this case, along

the axis the diffusion current aids the drift current and it was here that

the energy was found to be higher, while sufficiently off the axis where

the diffusion current opposes the drift current the energy was found to be

lower.

C. Higher Modes

A higher mode from (17) in the high field limit and for

x. Xo O + eEz), is

2CeEB N x
= 42Dv-(32 e F (Xo)Fy (.x)(?Xo )-

0

When this is written in terms of the variables G, z and it becomes

2f~)C,•eE N BC

f 2 e F (B Eo) FY (BS)(eEz -E+Go)
'YO•< 1 4'-D.1 V2 (3/2) 0 "

exp e(EBz Nexp FB(<-co exp L eEBP 2

A 4(e~z- G +-
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It is evident that the higher modes have a decaying exponential in z.

From the eigenvalue spectrum given above for y, it is seen that the

characteristic distance for the first mode above the fundamental is

1 - 4. 9/eEB•1eEB

Therefore a distance of the order of 1/eEB must be reached before the

lowest mode becomes the most important term. This explains why the

discussion of the lowest mode as representing the far-distant distri-

bution was carried out for z >I/eEB.

IV. CONSTANT CROSS SECTION

The equation that fo must satisfy for a constant cross section

6
gas is

-Lc EM2+ kT -f - + (eEX)2° Mr ffo\)]

E D 6m / \' eý, a z

+-" eEX2, 2 fo M>X2  20 M S )

6mez 6- • >c2,m ) (25)

with X= I/NT, where N is the gas density and a-, is the momentum

transfer cross section. This equation could not be converted to a

separable form by a change to new independent variables as was possible

in the constant c case. However, when the equation is taken to the
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high field limit, then such a conversion can be made and, of course,

in the zero field limit it is directly separable. These two limits will

therefore be presented as separate problems.

A. Zero Field Limit

In this limit the equation for fo is

1 2 Fe(acf0o m , 2 0 XMS
6m 1, 2(2m )1/2

This is to be solved with the source function, S, given by (10). The

complete distribution function for this case is obtained by the same

procedure as was used with constant "V and is

0 C 0 c1DE:/OT 2 2-1/2
f 4_ 4 e F (EO/kT) F. (6/kT)(z2 +P4 0D 0

(6 JZ m) 1/2 2)i /2 26

exp (- M-l-- (z 2 + (26)

The energy eigenfunction, FA (U), are solutions to the separated energy

equation

dFdF
u -- + (2 + u) uu+ (2 +. ) F = 0

du 2  du

where u = /kT. These functions are discrete and given by

F (u) e -u Li (1) (u)/NJ
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with . = 0, 1, 2 . . .. oD. Nk, which is the normalization constant
U

for the density function r(u) ue , is given by

The constant in front is expressed in terrms of Co, the normalization
0

- /kT
constant for the maxwell distribution e ,

= ( ) 3/2
Co 2 IW T

and in terms of D , the corresponding diffusion coefficient, given

by D =(2 Ž.,/3)(2 kT/m ¶ ,)./2 The lowest mode from (26) is of the

expected form

(Co/41Y'DD) e E/kT ( 2 + z21/2

The higher modes decay exponentially with distance from the source

with the characteristic length of

(M '1/2

6m)

B. High Field Limit

In Eq. (25), for the limit of high field, the term representing

electrons gaining energy from collisions with the gas atoms can be

neglected and the resulting equation is
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~ L 6m \ ~ eE:!. Ljj 6m

. 2 fo 0 Mý' S
6m 2 .(2m E)V2

It is clear that because of the mixed derivatives in P and z the equation

cannot be separated. However, by changing to new dimensionless

variables given by

2
y (AE)

•" 2A( - eEz)

and 7 2 eEA ,

where A = (1/eEX )(3m/M)1/2 the equation becomes

f 0o 1 °' y/2 o f°

(+ + ) + I2m1 421/4

This is now in a separable form. The formal solution to this equation,

which can be obtained by the same procedure that was used for constant,.

collision frequency, is

fo q- eEA V 2 2
DdK KJ(Kq) eF (Kyo)F 'K2

exp (2YoI/2
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for 2 and equal to zero for 2 The constant C is

the usual normalization constant for the Druyvesteyn energy function,

exp [-(AC )2], and is

C1 1,m- ) 1/2
r• - (3/4) 2

and D is the corresponding diffusion coefficient

D_ _ (2\1/2,
3 r(3/4) m

Thu sF (K2, y) are the eigenfunctions of the separated energyThe functions

equation,

d 25 d•' y/ý + ( + y) ý + (1 K K2 + y V2 0 0y 2
dy d 2  +(lY~dy+lK Y ,

with corresponding eigenvalues 0 W The density function for this

equation is yl/2 e.

Because the behavior of this equation at its irregular singular
•i 13

point at y = co is of a more complicated type than the, usual exponential,

the exact analytic form of those solution could not be obtained. However,

an approximate expression for the lowest. eigenfunction can be obtained

by a perturbation calculation, in a form which is appropriate for expressing

4i the far-distant behavior of the distribution function.
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The far-distant mode of the complete distribution is given by

co

fo - E. eO dKK jo(Ký)W (KY)F(K2 , y). exp (2Y -/ )

We will consider that F and YO can be expanded into a power series

2in K , i.e.,

F (K , y) = F (0) + K2 F (1) + K4 F (2) +......
0 o' 0 0

and

(o = (K°O() o() + 4  (2) +........

0When these are inserted into the above integral, f 0becomes

fo - e f d K Jo (KF(o) 2 (1)
o°c C • o) dK .... (y-o)+K FY.)+

0

(F 0 (o) (y) + K 2 F 0(I) (y + *~exp -K 2 (2yl0 /2 - 0() e1]
x exp[ (2yl/' 00)P1' (1 - K (2yl" )f()

(1-K6 (y1/2 , 1(3)+

0

These series can now be multiplied out and f can then be expressed as
.0



S33

CTeEA YO rl/2 dK(KJ go
fo0 - r1"rDo- e exp (2 -) / dKKJ (K)\ go

oI ~
0

(1+ K2 g+ K4 g 2 +K .. ) exp -(2Yol/2-•)K29(l] (27)

where the g-functions are given by

go 0 o(0) (yo0) F0(0) (Y)

F (1)(yo) 0 (1)(y)
_o o

g (- 2() (O)

F (y) F (y) F ()F (
o 0 0

9 (2) F(2) (y F (y)F (l) etc
0+ 0 0 + (0) (0

0 0 0 0 0

Eq. (27) can then be integrated term by term using the following bessel.
11

integral formula given by Watson,

CD exp -T2/4 0] Ln(°) 2/4 e)

dK K'"- j 0 (K) exp [-K 2 ()= 2 n+ln

The expression for f becomes
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o q = eEAe exp -(2y. Ojexp -//4 (2

(2yl1/2 ( P (1)
0 0

og()(&4(2yo 1/2 g L ()(Tt/4(2y1/2 (1 ))
g(02+1/2 1 ~)(l) + .b

(28)

If the region of interest is restricted to points that are far distant from

the source but close to the axis, then the quantities

(9/z) 2 , E/eEz, and l/eEAz

can be considered small in comparison to unity. When the Laguerre

polynomials are expanded in (28) and it is recalled that (2y

when expressed in terms of E and z is given by

(2yol/2 -)=2 eEzA[I - - 0 )/eEzJ,

then the terms that are first order in the above small quantities can be

picked out. Therefore, the most important terms in the bracket are

(2)(2

0

S(2) eEAz

8 (N (1) 4 + . .
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Thus knowing F to first order in K2 and YO to second order in K2

results in an expression for f0 that is valid near the axis (first order

in (e/z)2)and at far distances from the source (first order in I/eEAz).

In the appendix, F and ý° are obtained by a perturbation

2calculation up to first, and second order in K , respectively. From

these results the g-functions and the expansion coefficients for t

can be obtained as

-(y+ yo)
go =2 W'

G]o

g1= - an QLn()(y) + Ln()(Y))
n-o

(0)

P H

and (•0 (2) /i'• 1/

Values for a , for n up to four, are given in Table II~of the appendix.
n

Therefore f 0can be expressed in terms of E, z and p as
0

0C~.exp -(Ae) 2  1/2

3/2 1/2 '

eEAz a g (29)
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It is immediately obvious that for points very near the axis but at far

distance from the source, the expression reduces to the usual approxi-

mate form taken to this same limit, i. e.,

(C 4Vz x AP) exp 4D)zJ

where-Y,/D 1/2 eA.

For points off the axis it is more difficult in this case to

compare (29) with the approximate f than it was for the case of constant

collision frequency. However, expressions can be obtained for the

average energy, E av' and for the density, n, which can be compared

0with those from the approximate fo. These expressions are

E: f( 5/ 4) 1 - 0. 198 (e/z)2 + e.4z7
av (3/4) AeEAz

and (4Tr•D•. z)- 0.2040.39 4•~

nZ z) 0.204 (P/z)2 + eE-9z+ .023 eEAz (P/z)L '/2 eE•21
x exp 4z eEAp 2

The integrals involving the gI function were evaluated by using the

9generating function for the Laguerre polynomials. The numerical

constants in these expressions are accurate to a few per cent. As in

the constant collision frequency case the initial energy, 6o, was

taken to be zero. It is to be noted that Gav goes to the expected
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value of (r(5/4)/rl(3/4) A for points very close to the axis but far

from the source. Also it is apparent from the comparison of these

relationships with those obtained for constant collision frequency,

which are given by (23) and (24), that the qualitative discussion and

conclusions for the case of constant collision frequency will apply

directly to the constant cross section case.

VI. TOWNSEND TYPE D/ýi EXPERIMENT

The theory as developed above has demonstrated that in general

it is not correct to ascribe to electrons moving through a gas a distri-

bution in energy that is independent of position. In turn this implies

that such electrons are not characterized by a unique diffusion coeffi-

cient and mobility. However, the assumption of a unique D and ýi does

form the basis for the usual interpretation of the Townsend type D/4

L 2
experiment. Therefore, this type of experiment will be re-examined

in terms of the above theory to find if, under the conditions of the actual

experiments, appreciable errors are introduced by using the usual inter-

pretation. While it is recognized that the above theory does not take

into account the effect of electrode boundaries or of inelastic processes

in the gas, both of which are important for an accurate description of the

experiments as actually carried out, still the essential features of the

D/M experiment are represented by the point source in a gas in which

only elastic collisions take place. It is therefore reasonable to suppose

that the theory will give at least an estimate of the errors involved.
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When the distribution in energy is assumed to be independent

of position for a constant collision frequency gas, the expression for

the density normalized with respect to the value on axis can be obtained

from (8). This density ratio, which will be denoted by N, is given by

N)A I+ (9/z)2)1/2 exp(J• eE2z I+ (p/z)2 2 1/2-

This ratio could just as well be expressed in terms of D/[i where

DAL = I/eB. This expression is taken for the high field limit since

it has been shown earlier that the usual expression for the density is

only in error when the average electron energy is large in comparison

to thermal energies. It is clear that if the ratio of the density at some

point off axis to the density on axis is measured, i. e., if the density
14

ratio is measured, then B (or D/u) can be calculated.

The more accurate description of this experimental situation

has shown that while the density ratio is still given by the above expres-

sion for points very close to the axis, a more correct expression for

points further off the axis is

r -13/2 Fe~
N) exact= 1+ /4 (e/z)2 - exp 4 (9/z)]

These expressions can most easily be contrasted by expanding each in

powers of (9/z)2 up to the point that their difference is apparent. This

results in
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N approx.= - 1/2 (9/z) 2 + (9/Z) exp [ (30)

and in

N)exact -3/8 (p/z)2) exp eEBL (P/z)27 (31)

Typical experimental values for (eD/z) and eEBz(.= I-f), which are
2D

also representative of previous measurements, can be obtafned from

2the recent work of R. W. Warren and the author. In these measurements

the two experimental tubes that were used differed in z, the distance

from the source to the plane of measurement, and in (P/z). Table I

gives the range of kLEz/D covered in these measurements along with

the values of (P/z) 2 (two values per tube) for each of the two tubes,

Also given in Table I is the maximum fractional difference in N, i. e.,

&N N) amrK. N) exact

NN Npprox.

as calculated from, (30) and (31) for each (e/z) These figures show

that for a given value of eEBz the density ratio as predicted by the two

different theories can differ appreciably for typical experimental condi-

tions.

However, the important question is how different is the value

of fJE/D as predicted by the two theories for a given N. An expression:
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for the fractional difference in D/ýL (or for a given N can be obtained

by using (30) and (31). This is given by

D/i) approx. D/i)D/ 4l(w/z)/n(--l (\/zJ

This can be expressed as

MAO/• L D _ /z) 2
D/ýL 2 •Ez 4

where in (1/N) has been replaced by (IJEz/4D)(e/z) 2. Table I gives the

maximum value that this fractional difference can attain. It is clear

from these figures that while the fractional difference in D/ii is not as

large as in N, still the difference of the order 20% corresponding to

the largest value of (•/z) should be experimentally observable. In

the course of the measurements described in Ref. 2, certain inconsis-

tencies did arise using the conventional interpretation of this experiment.

However.- these inconsistencies, which were eventually resolved by an

empirical approach, could not be explained, even qualitatively, by the

results of the present theoretical investigation. Therefore it would

appear that in most cases the experiments have not been appreciably

affected by using the usual interpretation of this experiment and in the

cases where ( 9/z)2 was large enough for appreciable deviations to

exist, such deviations were masked by other effects.
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APPENDIX

Lowest Mode Energy Function for Constant •-

The energy differential equation for this case, is

d2F dF 2 1/2y + (I + y) T+ (I - K)+ y F 0.
dy2 .

Making the transformation

F(y) = e-y h(y)

the equation becomes

dh dh 1/2 -K 2dy + yy + (y/2 _ K2 h =0:. (A. 1)

We want to obtain the first few terms of a power series expansion in

K2 for Yo and ho, the lowest eigenvalue and eigenfunction for this

equation. That is, we want to find the first few terms in

h 0 h 0(0) + K 2 h 0(I) + K 4 h 0(2)+ .. .. ..

hnd h (o) +K2 (1) +K4 (2)+

00 0 0

and ino= (f(o)+oK2•(1) +K 4  oA(2 )+..

A-i
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-- Here we have considered YO to be the eigenvalue which

is a function of K 2. However, in the actual calculation of above

terms it is more convenient to reverse this viewpoint and to consider
22

K2 the eigenvalue which is a function of (P and then to consider .

1/2
the term (y t/ ) in (A., 1) as a perturbation. It is convenient to put

15
(A. 1) into a standard quantum mechanical form so that the usual

perturbation formulas can be used. Eq. (A. 1) can then be expressed

as

where

d2 dy0 dy2

1/2
H'= y

o o

2
and w =K

When is equal to zero, the complete set of discrete, orthonormal

9
eigenfunctions are

u =Ln L°:(0y)/n ,n n

where L (o) is a Laguerre polynomial with corresponding eigenvalues of
n

A- 2
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E = O -1, -2,. .- n . -*n

These functions are orthogonal with respect to the density function

-ye .

Using the usual perturbation formulas, 0 and wo, to second
15

order in perturbation theory, are

0 (H' 2

0n=l E n

and•2,, U_Y2: -'no
an Un

n=l n

where we have explicitly put E = o and with H' given by

o no

H1no f yl/2 e-yU U dy

0

The value of H' can be evaluated with the help of the generating
no

9function. for the Laguerre polynomials" and this quantity is tabulated.

in Table- II for n up to four.

We can now turn around and obtain Y•o(w) and To(W) and

these relations are

2 
2

w w (Hno )

00 (H.0) n n

A-3.
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and

OD H

Y =Uo - H Z0  1 "
16 n1l n n

The function 'which is normalized with respect to e-y is now

renormalized to y e-. Then Yo and h can be written in terms

2
of K as

\ (o)

ho= 1 K 27 a L (o) ( ,

n=o

and

fo =(2/4/2) K' (I - K' %a)

The constants a can be expressed in terms of H' as
n no

OD (H no2-4 f ('no)

a0 nn=l

and

a 2 IjH- ofon>a nonn ,%1/2 n o n'.

Values for a are given in Table II for n up to four. In summary, then

expansion coefficients for h and are

,. A-4
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oc

' 4/4 o

w a4 (y)
h0 rr.Z an Ln ()n=o

y o(l) _ 2,
1r/2

and o(2 _. __o

0 1/2

A-5
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CURVE 566064

E =0

"-0 .1 -Ay

2.0 2eEzB 
ez

plz- 0

1.5 - p/z 1/3

0 <
"•1.00

x p/z of o/2

axis

P/ 0

0 .2 .4 .6 .8 1.0

E:/eEz"

Fig.1 -Therato o foexact /fO approx. vs.''e/eEz for con'stant

collision frequency. The vertical dashed line indicates

the approximate position of EAV/eEz on the horizontal

axis.
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TABLE I. Maximum Fractional Difference in n and D/[i

/)n (%) _a
D (P/)n MD/j

0.005 0.3 0.1
50 - 500 (Long Tube)

0.02 5 0.5

0.24 15 8
2 -10 (Short Tube)

0.9 100 22
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TABLE II. Constants for the Perturbation Calculation

n 2H / a

n

0 1 0.259

1 -1/2 1/2

2 -.1/8 1/32

3, -3/48 1/288

4 -15/384 5/12, 288
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In eq. (9) the term on the left hand side should read m

Page 17

The denominator in the first equation at the top of the page should
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The first sentence of the last paragraph should read, "Because the

behavior of this equation near its irregular singular point at y = 0 requires
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